Extensions 1→N→G→Q→1 with N=C32 and Q=C23⋊C4

Direct product G=N×Q with N=C32 and Q=C23⋊C4
dρLabelID
C32×C23⋊C472C3^2xC2^3:C4288,317

Semidirect products G=N:Q with N=C32 and Q=C23⋊C4
extensionφ:Q→Aut NdρLabelID
C32⋊(C23⋊C4) = C62.2D4φ: C23⋊C4/C22D4 ⊆ Aut C32244+C3^2:(C2^3:C4)288,386
C322(C23⋊C4) = (C6×C12)⋊C4φ: C23⋊C4/C2×C4C4 ⊆ Aut C32244+C3^2:2(C2^3:C4)288,422
C323(C23⋊C4) = (C2×C62)⋊C4φ: C23⋊C4/C23C4 ⊆ Aut C32244C3^2:3(C2^3:C4)288,434
C324(C23⋊C4) = C62.31D4φ: C23⋊C4/C23C22 ⊆ Aut C32244C3^2:4(C2^3:C4)288,228
C325(C23⋊C4) = C62.32D4φ: C23⋊C4/C23C22 ⊆ Aut C32244C3^2:5(C2^3:C4)288,229
C326(C23⋊C4) = C3×C23.6D6φ: C23⋊C4/C22⋊C4C2 ⊆ Aut C32244C3^2:6(C2^3:C4)288,240
C327(C23⋊C4) = C62.110D4φ: C23⋊C4/C22⋊C4C2 ⊆ Aut C3272C3^2:7(C2^3:C4)288,281
C328(C23⋊C4) = C3×C23.7D6φ: C23⋊C4/C2×D4C2 ⊆ Aut C32244C3^2:8(C2^3:C4)288,268
C329(C23⋊C4) = C62.38D4φ: C23⋊C4/C2×D4C2 ⊆ Aut C3272C3^2:9(C2^3:C4)288,309


׿
×
𝔽